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Abstract

This paper offers an explanation for the properties of the nominal term structure

of interest rates and time-varying bond risk premia based on a model with rare

consumption disaster risk. In the model, expected inflation follows a mean reverting

process but is also subject to possible large (positive) shocks when consumption

disasters occur. The possibility of jumps in inflation increases nominal yields and

the yield spread, while time-variation in the inflation jump probability drives time-

varying bond risk premia. Predictability regressions offer independent evidence for

the model’s ability to generate realistic implications for both the stock and bond

markets.
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1 Introduction

Empirical work has documented the failure of the expectations hypothesis (Fama and Bliss

(1987)). The average nominal term structure of interest rates on government bonds is

upward-sloping, and the excess bond returns are predictable. The sizeable and time-varying

bond risk premia present challenges to equilibrium economics models, as standard models

can not account for these puzzles.

This paper provides a representative agent asset pricing model that can account for these

findings. In this model, the endowment is subject to large rare negative shocks (disasters),

furthermore, these disasters sometimes co-occurs with large positive jumps on expected

inflation.1 Earlier work has shown that disaster risk models can account for the high equity

premium, high stock market volatility and aggregate market return predictability observed

in the aggregate stock market.2 Besides the aggregate market results shown in previous

work, this model can accurately captures nominal bond prices and the time-varying bond

risk premia.

The possibility of the co-occurrence of large consumption decline and high inflations

has important implication for nominal bond prices. When these disasters happen, nominal

bonds have low real value, thus investor requires compensations for bearing these risks.

Since bonds with longer maturities are more sensitive to these risks, the model implies a

upward-sloping nominal yield curve. With the assumption of recursive utility, the model can

also match the level of the term structure and the size of the bond premium. Furthermore,

the time-varying nature of disaster probability implies a time-varying bond risk premium,

and this model can reproduce the evidence of bond premium predictability documented in

Campbell and Shiller (1991) and Cochrane and Piazzesi (2005).

1An extreme example of these events is the German hyperinflation: Between 1922 and 1923, real con-

sumption declines by 12.7%, and the inflation rate in the corresponding period was 3450%. A comprehensive

description of the historical data will be provided later in the model section.
2For example, Rietz (1988), Longstaff and Piazzesi (2004), and Barro (2006) obtain high equity pre-

mium, Gabaix (2012), Gourio (2008), and Wachter (2013) also obtain high volatility and predictability.
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In the model, each of the two risk factors, the pure consumption disaster risk and the

joint consumption-inflation disaster risk, affect both the equity and bond markets. Because

of this modeling strategy, the framework proposed in this paper has several advantages over

previous work in the term structure literature. First, it provides a parsimonious model that

can be calibrated without using bond market data. More specifically, the calibration are

targeted to match aggregate consumption growth, inflations, and equity market moments.

I then simulate the model to obtain a large number of small-samples. Similar to Bansal,

Kiku, and Yaron (2012) and Beeler and Campbell (2012), I construct confidence intervals

from the simulations and compare them to postwar U.S. data. We see that the data

moments are not only within the confidence interval, but also very close to the median

number implied by the model, suggesting the model can generates quantitatively realistic

implications for the nominal bond prices and return dynamics.

Second, this paper introduces a novel framework that can account for the interaction

between the stock and nominal bond markets. Duffee (2012) suggests that a good predictor

for the bond premium may not be a good predictor for the equity premium, and vice versa.

In the model, both types of disaster risks induce positive equity premium. On the other

hand, while joint consumption-inflation disaster risk carries a positive bond premium, pure

consumption disaster risk carries a small and negative bond premium. Given this prices

of risk structure, this model can reproduce these empirical results: price-dividend ratio

predicts excess returns on the aggregate market (Campbell and Shiller (1988)) and that

it has some predictive power for excess returns on the bond market, on the other hand,

term structure variables predict excess returns on the nominal bond market (Cochrane and

Piazzesi (2005)), yet they are less effective at predicting excess returns on the aggregate

market.

Many previous work also provide explanations for the nominal bond prices.3 Among

3For example, Bekaert, Hodrick, and Marshall (2001), Ehling, Gallmeyer, Heyerdahl-Larsen, and Illed-

itsch (2012), Bakshi and Chen (1996), Dai and Singleton (2002), Duffee (2002), Ang and Piazzesi (2003),

Ang, Dong, and Piazzesi (2007), Bikbov and Chernov (2010), Duffee (2006), and Rudebusch and Wu
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them, Piazzesi and Schneider (2006), Bansal and Shaliastovich (2013), and Rudebusch

and Swanson (2012) also use recursive preferences. Piazzesi and Schneider (2006) focus

on the negative effects of surprise inflation on future consumption growth, Bansal and

Shaliastovich (2013) build on the Bansal and Yaron (2004) long-run risk framework with

stochastic volatility, and Rudebusch and Swanson (2012) extend the long-run risk frame-

work to a DSGE setup. In order to generate the bond premia, these models require higher

risk aversion, typically above 20, in the current paper, the risk aversion is set equal to 3.4

Furthermore, unlike this paper, these work focus only on the nominal bond market.

Several other papers also provide general equilibrium explanations for both the stock and

bond market prices. However, they do not provide realistic implications for the interaction

between the two markets. Gabaix (2012) also considers a model with rare disasters. In

his work, different processes drive equity and bond premia and the calibration targets

both stock and bond market moments.5 In contrast, each risk factor in the present model

affects both the stock and bond markets, thus the model can be calibrated using stock

market data alone, and it provides a realistic framework to examine the interaction between

markets. Wachter (2006) and Bekaert, Engstrom, and Grenadier (2010) consider extensions

to the model with external habit formation (Campbell and Cochrane (1999)).6 These habit

formation models imply that the predictable components in the equity and bond premia

are high correlated, which is at odds with the data, as Duffee (2012) suggests. Furthermore,

habit models implies high relative risk aversion, for example, in Wachter (2006), the risk

aversion is above 30 at its long-run mean.

(2008).
4Similar to Piazzesi and Schneider (2006) and Bansal and Shaliastovich (2013), in this model, when

the risk of the co-occurrence of a consumption disaster and high inflations is high, expected consumption

growth is low and expectation of expected inflation is high. However, high inflations and low consumption

growth only co-occur when this type of consumption disasters are realized.
5In that model time-variation in the degree to which dividends respond to a disaster drives the equity

premium and time-variation in the size of an inflation jump drives the bond premium.
6For habit formation models, see also Buraschi and Jiltsov (2007) and Rudebusch and Swanson (2008),

which focus mainly on the term structure of interest rates.
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2 Model

2.1 Endowment, inflation, and preferences

The economy is populated with a representative agent. Assume that aggregate real con-

sumption solves the following stochastic differential equation:

dCt
Ct−

= µ dt+ σ dBCt + (eZct − 1) dNct + (eZcq,t − 1) dNcq,t,

where BCt is a standard Brownian motion. Aggregate consumption is subject to two types

of large shocks, and the arrival times of these shocks have a Poisson distribution, given by

Nct and Ncq,t. I will discuss the size and intensity of these Poisson jumps after I specify the

inflation process.

To model nominal assets, I assume an exogenous process for the price level:

dPt
Pt−

= qt dt+ σP dBPt, (1)

where BPt is a standard Brownian motion, that is independent of BCt.

The expected inflation process, qt, is time-varying. Specifically, it follows

dqt = κq (q̄ − qt) dt+ σq dBqt − Zcq,t dNcq,t − Zqt dNqt, (2)

where Bqt is a standard Brownian motion, that is independent of BCt and BPt. The

expected inflation process is also subject to two types of large shocks, and the arrival time of

these shocks follow Poisson distributions, given by Ncq,t and Nqt. Given these assumptions,

in normal times, realized consumption growth and realized inflation are uncorrelated ,

however, expected consumption growth and expected inflation are negatively correlated as

they are both subject to Ncq,t-type jumps.

The magnitude of an Nc–type jump is determined by Zc, the magnitude of an Ncq–type

jump is determined by Zcq, and that of an Nq–type jump is determined by Zq. I will
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consider all three types of Poisson shocks to be negative, that is Zc < 0, Zcq < 0, and

Zq < 0; furthermore, these jump sizes are random and have time-invariant distributions

νc, νcq, and νq, respectively. In what follows, I use the notation Eνj to denote expectations

taken over the distribution νj for j ∈ {c, cq, q}. The intensities of these Poisson shocks are

time-varying, and each follows a square-root process as in Cox, Ingersoll, and Ross (1985).

In what follows, I will assume that inflation spike probability is perfectly correlated with

inflation disaster probability.7 Specifically, for j ∈ {c, cq}, the intensity for Nj is denoted

by λjt, and it is given by

dλjt = κλj(λ̄j − λjt) dt+ σλj
√
λjt dBλjt.

Bλct and Bλcq,t are independent Brownian motions, and each is independent of BCt,

BPt, and Bqt. Furthermore, assume that the Poisson shocks are independent of each other,

and of the Brownian motions. Define λt = [λct, λcq,t]
>, λ̄ = [λ̄c, λ̄cq]

>, κλ = [κλc , κλcq ]
>,

Bλt = [Bλct, Bλcqt]
>, and Bt = [BCt, BPt, Bqt, B

>
λt]
>.

In what follows, a disaster (or consumption disaster) is a Poisson shock that affects

realized consumption growth. In particular, I will refer to the Nc–type shock as a non-

inflation disaster and the Ncq–type shock as an inflation disaster. The Nq–type shock only

affects expected inflation and I refer to it as an inflation spike. Furthermore, I will refer

to λc as the non-inflation disaster probability and λcq as the inflation disaster probability.

Though the latter also governs the intensity of inflation spikes, the majority of its effects

comes from inflation disasters rather than inflation spikes.

7This assumption means risk of inflation spikes and risk of inflation disaster are perfectly correlated,

but they do not necessarily co-occur. Inflation spikes in this model attempt to speak to the period of high

inflation in the 1970s and early 1980s. During this period, consumption growth was low, and the outlook

for future consumption growth was uncertain. Therefore not modeling inflation spike probability as an

independent process is realistic. Furthermore, the discussion in the next section shows that inflation spikes

have limited pricing effect, and the main results in this paper does not depend on this process. To keep

the model parsimonious, I assume that the inflation spike probability equals inflation disaster probability.
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The model setup of is motivated by historical data in Barro and Ursua (2008). Table

1 provides evidence for the co-occurrence of consumption disaster and high inflation. In

recorded history, 30 of the 89 consumption disasters were accompanied by inflation rates

greater than 10%. Furthermore, these events also happened in developed countries. In

fact, 17 of the 53 OECD disasters also co-occurred with a period of high inflation. For

example, between 1917 and 1921, real consumption declined by 16.4% in the U.S., and the

annual inflation rate during the same period was 13.9%.8 Figure 1 shows that the historical

distribution of annual inflation rates has a fat tail. Furthermore, these jumps in inflation

rates do not happen all at once, they were gradual processes that lasted a number of years.

Following Duffie and Epstein (1992), I define the utility function Vt for the representative

agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (3)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log ((1− γ)Vt)

)
. (4)

The above utility function is the continuous-time analogue of the recursive utility defined

by Epstein and Zin (1989) and Weil (1990), which allows for preferences over the timing of

the resolution of uncertainty. Furthermore, equation (4) is a special case when the elasticity

of intertemporal substitution (EIS) equals one. In what follows, γ is interpreted as risk

aversion and β as the rate of time preference. I assume γ > 0 and β > 0 throughout the

rest of the paper.

8One might argue that consumption disasters are accompanied by large deflation. However, only 17 of

the disasters (10 of the OECD disasters) coincide with any deflation. Furthermore, none of these disasters

had an abnormally large annual deflation rate; for example, the Great Depression had an annual deflation

rate of 6.4%. In fact, in an alternative model with empirically plausible deflation disasters, the results

reported in this paper remain substantially unchanged.
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2.2 The value function and risk-free rates

Let J(Wt, λt) denote the value function, where Wt denotes the real wealth of the represen-

tative agent. In equilibrium J(Wt, λt) = Vt.

Theorem 1. Assume

(κλc + β)2 > 2σ2
λcEνcq

[
e(1−γ)Zc − 1

]
and

(
κλcq + β

)2
> 2σ2

λcqEνcq
[
e(1−γ)Zcq − 1

]
. (5)

The value function J takes the following form:

J(Wt, λt) =
W 1−γ
t

1− γ
I(λt), (6)

where

I(λt) = exp {a+ bcλc + bcqλcq} . (7)

The coefficients a and bj for j ∈ {c, cq} take the following form:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β +

1

β
b>
(
κλ ∗ λ̄

)
, (8)

bj =
κλj + β

σ2
λj

−

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

, (9)

Here and in what follows, we use ∗ to denote element-by-element multiplication of

vectors of equal dimension. The signs of bc and bcq determine how disaster probabilities λc

and λcq affect the investor’s value function. The following corollary shows that the investor

is made worse by an increase in the disaster probabilities.

Corollary 2. For j ∈ {c, cq}, if Zj < 0, then bj > 0.

The following two corollaries provide expressions for the real and nominal risk-free rates

in this economy.
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Corollary 3. Let rt denote the instantaneous real risk-free rate in this economy, rt is given

by

rt = β + µ− γσ2 + λctEνc
[
e−γZc(eZc − 1)

]︸ ︷︷ ︸
non-inflation disaster risk

+λcq,tEνcq
[
e−γZcq(eZcq − 1)

]︸ ︷︷ ︸
inflation disaster risk

. (10)

The terms multiplying λct and λcq,t in (10) arise from the risk of a disaster. For Zj < 0,

the risk-free rate falls in λj: Recall that both non-inflation and inflation disasters affect

consumption, therefore high disaster risk increases individuals’ incentive to save, and thus

lowers the risk-free rate.

Corollary 4. Let r$
t denote the instantaneous nominal risk-free rate on the nominal bond

in the economy, r$
t is given by

r$
t = rt + qt − σ2

P . (11)

The nominal risk-free rate is affected by expected inflation; when expected inflation is

high, investors require additional compensation to hold the nominal risk-free asset.

2.3 Nominal government bonds

This section provides expressions for the prices, yields, and premia for nominal zero-coupon

government bonds.

2.3.1 Prices and yields

Nominal bond prices are determined using no-arbitrage conditions and the state-price den-

sity. Duffie and Skiadas (1994) show that the real state-price density, πt, equals

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC (Ct, Vt) , (12)
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and nominal state-price density, π$
t , is given by9

π$
t =

πt
Pt
. (13)

Let L
$,(τ)
t = L$(qt, λt, τ) denote the time t nominal price of a nominal government bond

that pays off one nominal unit at timet+ τ . Then

L$(qt, λt, s− t) = Et

[
π$
s

π$
t

]
.

The price L
$,(τ)
t can be solved up to four ordinary differential equations. The following

corollary is a special case of Theorem B.4 in Appendix B10

Corollary 5. The function L$ takes the following form:

L$(qt, λt, τ) = exp
{
a$
L(τ) + b$

Lq(τ)qt + b$
Lλ(τ)>λt

}
, (14)

where b$
Lλ(τ) =

[
b$
Lλc

(τ), b$
Lλcq

(τ)
]>

. The function b$
Lq takes the form

b$
Lq(τ) = − 1

κq

(
1− e−κqτ

)
, (15)

the function b$
Lλc

solves

db$
Lλc

dτ
=

1

2
σλcb

$
Lλc(τ)2 +

(
bcσ

2
λc − κλc

)
b$
Lλc(τ) + Eνc

[
e−γZct(1− eZct)

]
, (16)

9Consider a nominal asset that has nominal payoff X$
s at time s > t, the time t nominal price of the

asset, X$
t , can be written as X$

t = Et[
πt

πs

Ps

Pt
X$
s ] = Et[

π$
s

π$
t

X$
s ]. Therefore, π$

t = πt

Pt
.

10When the cash flow equals 1, that is, µD$ = 0, σD$ = 0, and φ$c = φ$cq = 0.
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the function b$
Lλcq

solves

db$
Lλcq

dτ
=

1

2
σλcqb

$
Lλcq(τ)2 +

(
bcqσλcq − κλcq

)
b$
Lλcq(τ)

+ Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − e(1−γ)Zcq,t

]
+ Eνq

[
e−b

$
Lq(τ)Zqt − 1

]
, (17)

and the function a$
L solves

da$
L

dτ
= −β − µ+ γσ2 + σ2

P +
1

2
σ2
qb

$
Lq(τ)2 + b$

Lq(τ)κq q̄ + b$
Lλ(τ)>(κλ ∗ λ̄), (18)

with boundary conditions a$
L(0) = b$

Lq(0) = b$
Lλc

(0) = b$
Lλcq

(0) = 0.

Corollary 5 shows how prices respond to innovations in expected inflation and in chang-

ing disaster probabilities. Equation (15) shows that innovations to expected inflation lower

prices for nominal bonds of all maturities. Furthermore, the effect will be larger the more

persistent it is, that is, the lower is κq.

Higher non-inflation disaster probability has a non-negative effect on prices. Consider

the ordinary differential equation (16); without the last term Eνc
[
e−γZct(1− eZct)

]
, the

function b$
Lλc

is identically zero. Therefore, this term determines the sign of b$
Lλc

. This

term can be rewritten as: Eνc
[
e−γZct(1− eZct)

]
= −Eνc

[
e−γZct(eZct − 1)

]
, which multiplies

λct in the equation for the nominal risk-free rate (11). Because higher discount rates

lower the price, the risk-free rate effect enters with a negative sign. With the boundary

condition b$
Lλc

(0) = 0, this implies that b$
Lλc

(τ) is strictly positive and increasing for all τ .

The intuition is straightforward: Non-inflation disaster risks only affect the nominal bonds

through the underlying real bonds, and since the real bonds in this economy pay off during

consumption disaster periods, they have negative premia.

Unlike non-inflation disasters, the effect of changing inflation disaster probability on

bond valuation is more complicated. Recall that this process governs both the probability

of an inflation disaster and the probability of an inflation spike. Similarly to the previous

argument, the last two terms in ODE (17) determine the sign of b$
Lλcq

. The first expectation

10



arises from inflation disasters, and it can be rewritten as:

Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − e(1−γ)Zcq,t

]
=

−Eνcq
[
e−γZcq,t(eZcq,t − 1)

]︸ ︷︷ ︸
Risk-free rate effect (–)

−Eνcq
[
(e−γZcq,t − 1)(1− e−b

$
Lq(τ)Zcq,t)

]
︸ ︷︷ ︸

Risk premium effect (+)

+Eνcq

[
e−b

$
Lq(τ)Zcq,t − 1

]
︸ ︷︷ ︸

Nominal price effect (–)

.

(19)

The first component is the risk-free rate effect; as previously discussed, this term is multi-

plied by a negative sign. The second component is part of the bond premium: The nominal

bond price drops during periods of inflation disaster, when marginal utility is high; this

term captures the premium investors require for bearing these jump risks. This risk pre-

mium effect is also multiplied by a negative sign since an increase in the discount rate lowers

the bond price. The last term is the nominal price effect, which represents the effect of

change in λcq on expected nominal bond prices through inflation. More specifically, it is the

percent change in the price of a nominal bond with maturity τ in the event of an inflation

disaster. Because a higher expected bond value raises the price, this term is multiplied by

a positive sign.

Given γ > 0 and Zcq < 0, the risk-free rate effect is negative, the risk premium effect is

positive and increasing in maturity τ for τ > 0, and the nominal price effect is negative and

decreasing in maturity τ for τ > 0. The effect of changing inflation disaster probabilities

on bond value depends on the sum of these three effects. Notice that when τ = 0, only the

risk-rate effect is non-zero. Together with the boundary condition b$
Lλq

(0) = 0, this implies

that b$
Lλq

(τ) > 0 for some small τ : An increase in inflation disaster probability raises prices

on bonds with short maturity. As maturity increases, however, risk premium and nominal

price effect prevail over the risk-free rate effect, implying that prices on bonds with longer

maturity decrease with inflation disaster probability.

The last term in ODE (17) arises from inflation spike risks. Notice that this term

represents the nominal price effect, and it enters with a positive sign. Furthermore, it is

11



negative and decreasing in maturity τ for τ > 0; implying that an increase in the chance

of an inflation spike lowers nominal bond prices and the effect is stronger for bonds with

longer maturity.

Before moving on to discuss bond premia, the following definition and corollary provides

expression for the nominal bond yield in the model:

Definition 1. The yield to maturity for a nominal bond with maturity τ at time t, denoted

by y
$,(τ)
t , is defined as:

y
$,(τ)
t =

1

τ
log

(
1

L
$,(τ)
t

)
. (20)

Corollary 5 implies that the yield to maturity in this economy takes a particularly simple

form:

Corollary 6. The nominal yield to maturity for a nominal bond with maturity τ at time

t, y
$,(τ)
t , is given by

y
$,(τ)
t = −1

τ

(
a$
L(τ) + b$

Lq(τ)qt + b$
Lλ(τ)>λt

)
, (21)

where the coefficients a$
L(τ), b$

Lq(τ), and b$
Lλ(τ) are given by (15) - (18).

2.3.2 The bond premium

This section provides an expression for the instantaneous bond premium and discusses its

properties. For notation simplicity, I will first define the jump operator, which denotes how

a process responds to the occurrence of a jump. Let X be a jump-diffusion process. Define

the jump operator of X with respect to the jth type of jump as the following:

Jj(X) = Xtj −Xtj− j ∈ {c, cq, q},

for tj− such that a type-j jump occurs. Then define

J̄j(X) = Eνj
[
Xtj −Xtj−

]
j ∈ {c, cq, q}.

12



The instantaneous nominal expected return on a nominal bond with maturity τ is simply

the expected percent change in nominal prices. Let L
$,(τ)
t = L$(qt, λt, τ) be the time-t price

of a τ -year nominal bond, by Ito’s Lemma:

dL
$,(τ)
t

L
$,(τ)

t−

= µL$,(τ),t dt+ σL$,(τ),t dBt +
∑

j∈{c,cq,q}

Jj(L$,(τ)
t )

L
$,(τ)
t

dNjt.

Then the instantaneous expected return can be written as:

r
$,(τ)
t = µL$,(τ),t +

1

L
$,(τ)
t

(
λctJ̄c(L$,(τ)

t ) + λcq,t

(
J̄cq(L$,(τ)

t ) + J̄q(L$,(τ)
t )

))
. (22)

Corollary 7. The bond premium relative to the risk-free rate r$ is:

r
$,(τ)
t − r$

t = −
∑

j∈{c,cq}

λjtb
$
Lλj

(τ)bjσ
2
λj

+ λcq,tEνcq

[
(e−γZcq,t − 1)(1− e−b

$
Lλq

(τ)Zcq,t)
]

(23)

The first term in (23) arises from time-varying non-inflation and inflation disaster

probabilities (time-varying probability adjustment). Recall that bj > 0 for j ∈ {c, cq},

b$
Lλc

(τ) > 0 for all τ , b$
Lλcq

(τ) > 0 for small τ and b$
Lλcq

(τ) < 0 for larger τ . Therefore, the

time-varying non-inflation disaster probability adjustment is negative because the under-

lying real bond provides a hedge against consumption disasters. On the other hand, the

time-varying inflation disaster probability adjustment is negative for bonds with shorter

maturities and positive for bonds with longer maturities. The second term arises from the

co-movement in nominal bond prices and marginal utility when a disaster occurs. Notice

that this term depends on b$
Lq: When an inflation disaster occurs, expected inflation rises,

which pushes future bond prices down. Given that b$
Lq < 0 and the assumption that γ > 0,

Zqt < 0, the second term is positive.

In a sample without disasters, but possibly with inflation spikes, the observed return is

r
$(τ)
nd,t = µL$,(τ),t +

1

L
$,(τ)
t

λcq,tJ̄cq(L$,(τ)
t ),
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where the subscript “nd” is used to denote expected returns in a sample without consump-

tion disasters. The following corollary calculates these expected returns.

Corollary 8. The expected bond excess returns observed in a sample without disaster is:

r
$(τ)
nd,t − r

$
t = −

∑
j∈{c,cq}

λjtb
$
Lλj

(τ)bjσ
2
λj

+ λcq,tEνcq

[
e−γZcq,t(1− e−b

$
Lq(τ)Zcq,t)

]
. (24)

2.4 The aggregate market

Let Dt denote the dividend on the aggregate market. Assume that total dividends in the

economy evolve according to

dDt

Dt−
= µD dt+ φσ dBCt + (eφZct − 1) dNct + (eφZqt − 1) dNcq,t. (25)

Under this process, aggregate dividend responds to disasters by a greater amount than

aggregate consumption does (Longstaff and Piazzesi (2004)). The single parameter, φ,

determines how aggregate dividend responds to both normal and disaster shocks. In what

follows, φ is referred to as leverage as it is analogous to leverage in Abel (1999).

Let H (Dt, λt, τ) denote the time t price of a single future dividend payment at time

t+ τ . Then

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
,

where π is the real state-price density defined by (12). The price H can be solved in closed-

form up to three ordinary differential equations, and the following corollary is a special

case of Theorem B.2 in Appendix B.11

Corollary 9. The function H takes the following form:

H(Dt, λt, τ) = Dt exp
{
aφ(τ) + λ>t bφλ(τ)

}
, (26)

11φc = φcq = φ, and σD = φσ.
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where bφλ = [bφλcbφλcq ]
>. For j ∈ {c, cq}, function bφj takes the following form:

bφj (τ) =
2Evj

[
e(1−γ)Zjt − e(φ−γ)Zjt

] (
1− e−ζbj τ

)
(
ζbj + bjσ2

j − κj
) (

1− e−ζbj τ
)
− 2ζbj

, (27)

where

ζbj =

√(
bjσ2

j − κj
)2

+ 2σ2
jEνj

[
e(1−γ)Zjt − e(φ−γ)Zjt

]
. (28)

Function aφ(τ) takes the following form:

aφ(τ) =

µD − µ− β + γσ2 (1− φ)−

 ∑
j∈{c,cq}

κλj λ̄j

σ2
λj

(ζbj + bjσ
2
λc − κλj)

 τ

−
∑

j∈{c,cq}

(
2κλj λ̄j

σ2
λj

log

(
(ζbj + bjσ

2
λj
− κλj)(e

−ζbj τ − 1)

2ζbj

))
. (29)

Let F (Dt, λt) denote the time t price of the aggregate stock market (the price of the

claim to the entire future dividend stream). Then

F (Dt, λt) =

∫ ∞
0

H (Dt, λt, τ) dτ.

Equation (27) shows that bφj(τ) < 0 for j ∈ {c, cq}; therefore the price-dividend ratio,

G (λt) =

∫ ∞
0

exp
{
aφ(τ) + λctbφλc(τ) + λcq,tbφλcq(τ)

}
dτ, (30)

decreases in both non-inflation and inflation disaster probability.

Using Ito’s Lemma, the process for the aggregate stock price Ft = F (Dt, λt) can be

written as:

dFt
Ft−

= µF,tdt+ σF,tdBt +
∑

j∈{c,cq}

Jj(Ft)
Ft−

dNjt.
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The instantaneous expected return is the expected change in price, plus the dividend yield:

rmt = µF,t +
Dt

Ft
+

∑
j∈{c,cq}

λjt
J̄j(Ft)
Ft

. (31)

Corollary 10. The equity premium relative to the risk-free rate is:

rmt − rt = φγσ2 −
∑

j∈{c,cq}

λjt
1

Gt

∂Gt

∂λj
bjσλj +

∑
j∈{c,cq}

λjtEνj [(e
−γZj − 1)(1− eφZj)]. (32)

Proof of this Corollary is similar to the proof of Corollary 7.

3 Quantitative results

The model is calibrated to match aggregate consumption growth, inflation, and aggregate

market moments. To evaluate the quantitative implication of the model, I discretize the

model at monthly frequency and simulate monthly data for 60,000 years. Furthermore,

I simulate 100,000 60-year samples, also at monthly frequency. For each of these small-

samples, the initial values of λct and λcq,t are drawn from their stationary distributions, and

the initial value of qt is set equal to its mean, q̄. In each of the tables that follow, I report

the data and population value for each statistic. In addition, I report the 5th-, 50th-, and

95th-percentile values from the small-sample simulations (labelled “All Simulations” in the

tables), and the 5th-, 50th-, and 95th-percentile values for the subset of the small-sample

simulations that do not contain disasters (labelled “No-Disaster Simulations” in the tables).

Samples in this subset do not contain any jumps in consumption, but they may contain

jumps in expected inflation.

In the past 60 years, the U.S. did not experience any consumption disasters; however,

it experienced a period of high inflation in the late 1970s and early 1980s. The No-Disaster

subset from the simulation accommodates the possibility that there was an inflation jump in

the country’s postwar history; statistics from this subset therefore offer the most interesting
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comparison for the U.S. postwar data. With this calibration, about 23% of the samples

do not experience any type of consumption disaster, and about one-third of these samples

contain at least one jump in expected inflation.12

3.1 Calibration

3.1.1 Data

The data on bond yields are from the Center for Research in Security Prices (CRSP).

Monthly data is available for the period between June 1952 and December 2011. The yield

on the three-month government bills is from the Fama risk-free rate, and yields on zero-

coupon bonds with maturities between one and five year are from the Fama-Bliss discount

bond dataset.

The market return is defined as the gross return on the CRSP value-weighted index.

The dividend growth rate is from the dividends on the same index. To obtain real return

and dividend growth, I adjust for inflation using changes in the consumer price index, which

is also available from CRSP. The price-dividend ratio is constructed as the price divided

by the previous 12 months of dividends. The government bill rate is the inflation-adjusted

three-month Treasury Bill return. All data are annual. I use data from 1947 to 2010; using

only postwar data provides a comparison between U.S. data and the simulated samples

without consumption jumps.

3.1.2 Parameter values

Table 2 reports the parameter values. Mean consumption growth is set at 1.96% and

the volatility of consumption growth is 1.45% to match their postwar data counterparts.

Mean dividend growth is set to 3.63% to match the price-dividend ratio. The leverage

parameter φ governs the ratio between the volatility of log dividends and the volatility

12As previously mentioned, inflation spikes have limited pricing effect. In an alternative model without

inflation spikes, the main results remain substantially unchanged.
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of log consumption, which suggest the value to be 4.66. However, it also determines how

dividends response to consumption disasters and hence the equity premium. I choose,

φ = 3.5, so that dividends have a more conservative response to consumption disasters and

generates a sizeable equity premium. Rate of time preference β is set to be low to obtain

a realistic short-term government bill rate. Relative risk aversion γ is set equal to 3.

Mean expected inflation is set to 2.7%; with this value, the median value of the real-

ized inflation among the simulations with no consumption disaster is 3.72%, and the data

counterpart is 3.74%. The volatility of non-expected inflation σp equals 0.8% to match

the realized inflation volatility in the data; the median value among the simulations with

no consumption disaster is 2.94%, and the value in the data is 3.03%. The volatility of

expected inflation σq equals 1.3% to match the volatility of short-term bond yield; the

volatility of three-month Treasury Bill yield is 3.01% in the data, and the median value

among the simulations with no consumption disaster is 3.03%. The mean reversion param-

eter in the expected inflation process governs the persistence of the inflation process, which

is highly persistent and the autocorrelation decays slowly. This parameter it is set to 0.09

to obtain a reasonable first order autocorrelation of the inflation process.

Barro and Ursua (2008) calibrated the average probability of a consumption disaster

for OECD countries to be 2.86%, implying that λ̄c + λ̄cq = 2.86%.13 In the data, about

one-third of the disasters are accompanied by high inflation (Table 1), therefore I set λ̄c to

equal 1.83% and λ̄cq to equal 1.03%. The persistence in the price-dividend ratio is mostly

determined by the persistence in the disaster probability, therefore the mean reversion

parameters for both inflation and non-inflation disaster probabilities are set to be low:

κλc = κλcq = 0.11. With this choice, the median value of the persistence of the price-

dividend ratio among the simulations with no consumption disaster is 0.75; the value in

the data is 0.92. The volatility parameters of the intensity processes are chosen to obtain

13I calibrate the disaster probability to the OECD subsample but the size of jumps to the full set of

samples. This is a more conservative approach as OECD countries have less frequent but more severe

disasters.
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reasonable volatility for the aggregate market returns. Given other parameters, Equation

9 imposes upper bounds for these values, I set σλc and σλcq are set at the maximum value:

σλc = 0.107 and σλcq = 0.093. With these values, the median values of aggregate market

return volatility in the no disaster samples is 14.59%, the postwar data counterpart is

17.79%.

The disaster distributions Zc and Zcq are chosen to match the distribution of consump-

tion declines in all historical disaster events. Following Barro (2006) and Barro and Jin

(2011), I consider 10% as the smallest possible disaster magnitude and I assume that jump

sizes follow power law distributions. For non-inflation disasters, I set the power law pa-

rameter to equal 9, and for inflation disasters, I set the power law parameter to equal 7.

In the data, the distribution of consumption decline has mean 26% and median 19% for

inflation disasters, in the model, the mean and median are 27% and 22%, respectively. For

non-inflation disasters, the mean is 20% and the median is 16% in the data, and 22% and

19% in the model. Figure 2 plots these power law distributions along with distributions of

large consumption declines. It compare the power law distribution with parameter 7 to the

distribution of large consumption declines that are accompanied by high inflation, and the

power law distribution with parameter 9 to the distribution of large consumption declines

that are not accompanied by high inflation. In addition, I will assume that Zq follows the

same distribution as Zcq.
14

3.2 Yield curves and expected returns as functions of the state

variables

Figure 3 plots the loadings functions in the expression for the nominal bond yield (21), using

parameters in Table 2. In particular, it shows the loading on expected inflation, −bLq/τ ;

on non-inflation disaster probability, −bLλc/τ ; and on the inflation disaster probability,

14Figure 1 shows that inflation rates during disasters has a fatter tail than consumption declines. Hence

this assumption truncates the extreme events.

19



−bLλcq/τ ; all as functions of maturity τ .

The loading on expected inflation is positive and decreases with maturity: High expected

inflation lowers bond values and raises bond yields; due to mean-reversion, the effect is

slightly larger on bonds with shorter maturities. The loading on non-inflation disaster

probability is negative and decreases with maturity. While the loading on the inflation

disaster probability is also negative for short maturity bonds, it increases with maturity

and becomes positive. As discussed in Section 2.3.1, non-inflation disaster risks only induce

risk-free rate effect: High non-inflation disaster risk lowers the risk-free rate, and leads to

higher bond prices and lower bond yields. Therefore, the coefficient on the non-inflation

disaster probability is negative and decreasing with maturity. On the contrary, because

inflations jump up during inflation disaster times, inflation disaster probability also have

risk premium effect and nominal price effect, both lead to lower bond prices and higher bond

yields.15 The bottom-right panel of Figure 3 shows that the risk-free rate effect dominates

for short maturity bonds while the risk premium and nominal price effect dominates for

bonds with longer maturities. Furthermore, the shape of function −bLλcq/τ is mainly

determined by the risk premium effect. From this figure, one can also observe that the

slope of the yield curve is mainly determined by inflation disaster probability.

Figures 4 and 5 plots the bond risk premia as functions of non-inflation disaster prob-

ability, λc, and inflation disaster probability, λq, using Equation (23) and parameters in

Table 2. Expected inflation q is set equal to 2.8% in all cases. To illustrate the impact

of changes in disaster probabilities on bonds with different maturities, I compare the risk

premia on one- and five-year bonds. Figure 4 shows that risk premia decrease with non-

inflation disaster probability, and also that bonds with longer maturities are more sensitive

to these changes. Equation (23) shows that non-inflation disaster probability implies a neg-

ative premium, and that the absolute magnitude of this premium increases with maturity.

Figure 5 shows that risk premia increase as a function of the inflation disaster probability

and that bonds with longer maturities are more sensitive to this risk: The co-movement of

15Recall that part of the nominal price effect comes from the presence of inflation spike risks.
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marginal utility and bond prices in inflation disaster periods generates a positive premium

for all nominal bonds, and this premium increases with maturity. While non-inflation and

inflation diaster risks has the opposite effect on bond premium, by comparing Figures 4

and 5, one can also see that bond risk premia are more sensitive to inflation disaster risks

than to non-inflation disaster risks. This suggests that most of the time-variation in bond

risk premia comes from variation in inflation diasater risks.

Figure 3 – 5 provide evidence of predictable bond premia in the model. Figure 3 shows

that high inflation disaster risk leads to high yield spread, and Figure 4 and 5 show that

high inflation disaster risk also leads to high bond premium.16 Therefore, one should expect

yield spread to have predictive power on bond premium in this model: Higher yield spread

are likely to be followed by higher bond excess returns. Furthermore, since premium on

long-term bonds are more sensitive to disaster probabilities than premium on short-term

bonds, longer-term bond excess returns should be more sensitive to changes in yield spreads

than excess returns of shorter-term bonds are.

3.3 Simulation results

3.3.1 Nominal yields and returns

Figures 6 and 7 show the first two moments of yields for nominal bonds with different

maturities. Figure 6 plots the data and model-implied average nominal bond yields, and

Figure 7 plot the data and model-implied volatility of nominal bond yields, both as functions

of time to maturity. In each figure, I plot the median, the 25th-, and 75th-percentile values

from the subset of small-samples that do not contain any consumption disasters. Table 5

reports the data and all model-implied statistics of mean and volatility of yields for nominal

bonds with one, two, three, four, and five years to maturity.

The model is capable of explaining the level and shape of the average nominal yield

curve. The median values from the no-disaster simulations increase with maturity and are

16Also true for low non-inflation disaster risk.
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close to their data counterparts. The median value of the average bond yields increases

from 5.53% for one-year bonds to 6.06% for five-year bonds; in the data, it increase from

5.20% for one-year bonds to 5.82% for five-year bonds. In addition to the first moment,

the model also generates realistic implications for the volatility of bond yields. The median

values decreases from 2.87% for one-year bond to 2.69% for five-year bond; in the data,

it decreases from 3.02% for one-year bond to 2.78% for five-year bond. The confidence

intervals for these results are large because these samples contains periods with inflation

spikes.

The nominal yields are on average higher and more volatile in the full set of simulations

and in population because these simulations contain more jumps on expected inflation.17

Another observation from these table is that the population moments in these tables are

much higher than the median of the small sample simulations, and this is because inflations

rates for the small samples are highly skewed. Inflation jumps occur less frequently in the

median small sample than in population, and about 36% of the small samples do not

contains any inflation jumps. In fact, the population moments are close the average of the

small sample.18

Previous consumption-based models successfully capture the level and shape of the

nominal yield curve. However, unlike this model, they do not generate realistic implica-

tion for the second moment. The habit formation model in Wachter (2006) implies that

short-term yields are more volatile than long-term yields, which is counterfactual. In both

Piazzesi and Schneider (2006) and Bansal and Shaliastovich (2013), short-term bond yields

are also more volatile than long-term bond yields, but the levels are much lower than the

data counterparts.19 Comparing with the three models, this model also impose a poten-

17In population, jumps on expected inflation occur about 2% of the times. The median number of jumps

on expected inflation in the full set of small samples is 1, which is about 1.67%, and the median number

of inflation jump in the no-disaster samples is 0.
18The inflation moments in Table 4 can be interpreted the same way.
19For example, in Bansal and Shaliastovich (2013), the yield volatility decreases from 2.37% for one-year

bond to 2.17% for five-year bond.
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tially more reasonable requirement on the utility function of the representative agent. In

the current calibration, relative risk aversion is set equal to 3. In contrast, in order to

generate sizeable premium, Piazzesi and Schneider (2006) set it equal to 43 and Bansal and

Shaliastovich (2013) estimate it to be 20.90. The habit formation model in Wachter (2006)

assumes a time-varying risk aversion, which is greater than 30 when the state variable is

at its long-run mean.

Besides nominal bond yields, this model also generates realistic moments for bond

returns. Table 6 reports the mean and standard deviation of annual excess returns on

bonds with two, three, four, and five years to maturity, all relative to returns on one-year

bonds. Panel A and B of the table shows that excess returns on longer term bonds are

on average larger, and more volatile. Average bond excess returns increases from 0.35%

for two-year bond to 0.97% for five-year bond, and excess return volatility increase from

1.76% for two-year bond to 6.66% for five-year bond. As mentioned in the earlier section,

bond premium in the model is driven mainly by inflation disaster probability, and this risk

affect long term bonds more than short term bonds. Together, these implies the Sharpe

ratio in the model decreases with bond maturity,from 0.19 for two-year bond to 0.14 for

five-year bond. Evidence on the inverse relation between Sharpe ratio and bond maturity

is also provided by Campbell and Viceira (2001), and Duffee (2010).

3.3.2 Principal component analysis

Litterman and Scheinkman (1991) find that most of the variations in yield curve can be

explained by a three-factor model. Specifically, the first factor affects the level of the yield

curve, the second factor affects the slope, and the third factor affects the curvature. To

evaluate whether the model also exhibits this feature, I perform a principal component

analysis on the data and model-simulated yields. Figure 9 reports the results. For the

model, I only report the median values drawn from the subset of small-sample simulations

that does not contain any disasters. I plot the loadings on yields with different maturities

on each of the first three principal components. Similar to Litterman and Scheinkman
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(1991), a shock to the first principal component has similar effects across yields of different

maturities (level factor); a shock to the second principal component raises yields on short-

term bonds and reduces yields on long-term bonds (slope factor); and a shock to the third

principal component raises yields on bonds with median maturity, but lowers yields on

short- and long-term bonds (curvature factor). In addition, the bottom-right panel also

shows that almost all the variations in yield curve are explained by the first three principal

components, both in the data and in the model.

Given the three-factor structure of the model, it is natural to ask how these three factors

relate to the three state variables in the model. Table 7 reports the correlation between each

of the three state variables in the model and each of the three principal components. The

level factor is mostly correlated with expected inflation, with correlation coefficient equals

.96; consistent with Figure 3, an increase in expected inflation or inflation disaster prob-

ability raises the yield curve, while an increase in non-inflation disaster probability lowers

it. The slope factor is highly negatively correlated with the inflation disaster probability,

with correlation coefficient −.95 and slightly positively correlated with expected inflation

and non-inflation disaster probability.20 The curvature factor is mostly correlated with

non-inflation disaster risks; a shock to non-inflation disaster risks (also expected inflation

and inflation disaster risks) increase the curvature of the yield curve.

3.3.3 Time-varying bond risk premia

First I consider the “long-rate” regression in Campbell and Shiller (1991):

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h

(
y

$,(n)
t − y$,(h)

t

)
+ error, (33)

where n denotes bond maturity and h denotes the holding period. Under the expectations

hypothesis, excess returns on long-term bonds are unpredictable, which implies that βn

20Note that the loadings on the second principal component decrease with maturity, so a positive shock

to this principal component reduces the slope.
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should equal one for all n. In what follows, I will consider this regression at quarterly

frequency using long-term bonds with maturities of one, two, three, four, and five years,

that is, n = 1, 2, 3, 4, 5 and h = 0.25. Figure 8 and Table 8 reports the results of regression

(33). Using data from June 1952 to December 2011, the coefficient βn’s are negative for

all maturities n, and these coefficients decrease form −0.57 for one-year bond to −1.68 for

five-year bond. This implies that higher yield spread predicts higher bond excess return,

furthermore, a high yield spread predicts a higher excess return for bonds with longer

maturity.

The model is also capable of capturing this feature. Equations (23) and (24) show that

higher inflation disaster risks and lower non-inflation disaster risks lead to higher bond

risk premia, furthermore, Figure 4 and 5 show that the effect of disaster risks on bond

premia increase with maturity. On the other hand, Figure 3 shows that higher inflation

disaster risks and lower non-inflation disaster risks also lead to higher yield spreads. These

imply that bond premia are high when yield spread is large, and given the level of yield

spread, bond premia increases with maturity. As shown in Table 8, the median values of the

coefficients among the simulations that contain no consumption disasters are also negative

and decreasing with maturity n, from −0.30 for one-year bond to −0.66 for five-year bond.

Furthermore, the data values are all above the 5th percentile of the values drawn from

the model. Higher inflation disaster risks, however, also lead to a higher probability of

jumps on expected inflations. Once these jumps are realized, bond prices drop and realized

excess returns fall. In Table 8, one can see that while the median values drawn from the

no-disaster simulations are negative, the population values and the median values among

the full set of simulations are positive.

In addition to the long-rate regressions, I also consider the forward rate regressions

performed by Cochrane and Piazzesi (2005) to evaluate the model’s success in capturing

time-varying bond risk premia. In what follows, I consider the annual forward rate. The
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n-year forward rate at time t for a loan from time t+ n to time t+ n+ 1 is denoted by fnt :

fnt = logL
$,(n−1)
t − logL

$,(n)
t .

The forward rate regressions are done in two steps. First I regress the average annual

excess returns on two-, three-, four-, and five-year nominal bonds on all available forward

rates:

1

4

5∑
n=2

r
e,(n)
t+1 = θ>ft + error, (34)

where r
e,(n)
t+1 = r

$,(n)
t+1 − r

$,(1)
t+1 is the excess return of a bond with maturity n and ft denotes

the vector of all forward rates available at time t. The second step is to form a single factor

ĉpt+1 = θ̂>ft and regress the excess returns of bonds with different maturities on this single

factor:

r
e,(n)
t+1 = constant + ρnĉpt+1 + error. (35)

Following Cochrane and Piazzesi, I consider monthly overlapping annual observations

from June 1952 to December 2011. In the data, I construct one-, two-, three-, four-, and

five-year forward rates. In the model, however, I can only construct three independent

forward rates since the model only has three factors. Therefore, I will use all five forward

rates in the data, but only one-, three-, and five-year forward rates in the model.

Table 9 reports the results from the second stage regression, (35). In the data the

single forward rate factor predicts bond excess returns with an economically significant

R2, between 0.15 and 0.20. Furthermore, the coefficient on this factor increases with bond

maturity, from 0.44 for two-year bonds to 1.47 for five-year bonds, implying that the forward

rate factor predicts higher return for longer term bonds. The model successfully generates

these findings: The median values of the R2’s drawn from the subset of the small-sample

simulations containing no consumption disasters are around 0.18, which are close to their

data counterparts. The median value of the coefficients in these samples also increase

with maturity: from 0.42 for two-year bonds to 1.57 for five-year bonds, also match their
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data counterparts. In the full set of small-samples, the R2 are lower but still economically

meaningful, the population R2 however, are almost zero.

In the model, the forward rate factor is a linear combination of the state variables, with

the inflation disaster risk being the more important one: the median value of the coefficient

in the sample without consumption disaster is 1.54 for λcq and −0.42 for λc. The model is

therefore able to replicate the empirical finding because the linear combination of forward

rates is mostly determined by the inflation disaster probability, and higher inflation disaster

probability leads to a higher forward rate factor and higher bond risk premia, and the

premia increases with bond maturity21.

3.3.4 The aggregate market

This model is also successful in matching moments in the aggregate market. Table 10

reports the simulation results. The model is able to explain most of the equity premium,

which is 7.25% in the data; the median value from the no-disaster subsample is 6.12%, and

the data is below the 95th percentile of the values drawn from the model. The volatility of

equity returns equals 17.79% in the data, and the median value in the model is 14.59%. This

model generates a Sharpe ratio of 0.42, which is also close to its postwar data counterpart,

0.41.

To calculate the real three-month Treasury Bill returns, I calculate the realized returns

on the nominal three-month Treasury Bill, then adjust them by realized inflation. This

model generates reasonable values for the short-term interest rate; this value in the data is

1.25%, and the median value from the small-sample containing no consumption disasters

is 1.80%. Furthermore, the data value is above the 5th percentile of the values drawn from

the model, indicating that we cannot reject the model at the 10% level.

The model, however, only has limited ability to explain the volatility of the price-

dividend ratio. As discussed in Bansal, Kiku, and Yaron (2012) and Beeler and Campbell

21Variation in non-inflation disaster probability also leads to similar results, as high non-inflation disaster

probability leads to lower forward rate factor and lower risk premis.
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(2012), this is a limitation shared by models that explain aggregate prices using time-

varying moments but parsimonious preferences. Time-varying moments imply cash flow,

risk-free rate, and risk premium effects, and one of these generally acts as an offset to the

other two, thus limiting the effect time-varying moments have on prices.

3.3.5 Interactions between the aggregate and bond market

Previous works have shown that variables that predict excess returns in one asset class often

fail in another. For example, Duffee (2012) showed that while term structure variables

predict bond excess returns, they do not predict stock market excess returns, and vice

versa. In this section, I consider two predictor variables, the price-dividend ratio and the

linear combination of forward rates that best predicts bond returns. I also consider two

excess returns, the aggregate market excess return, defined as aggregate market returns

over short term bill returns, and the average bond returns, defined as the average of the

returns on one-, two-, three-, four- and five-year nominal bonds returns over the short term

bill returns. I calculate the predictive regressions of each excess returns on each predictor

variable, both in the model and using annal data from 1953 to 2010. Tables 11 – 14 report

the results from these predictive regressions.

Tables 11 and 13 show the results of regressing aggregate and bond market excess returns

on the price-dividend ratio. Panel A of these tables shows the result for aggregate market

excess returns. It is well known that price-dividend ratio predicts aggregate market excess

returns in the data (e.g. Campbell and Shiller (1988), Cochrane (1992), Fama and French

(1989) and Keim and Stambaugh (1986)), and similar to previous work in the time-varying

disaster risk literature, this model is able to generate this feature. Equation (30) shows that

high disaster probability lowers the price-dividend ratio. Furthermore, when disaster risk

is high, investors require a high premium to hold the aggregate market asset. This implies

that on average, a low price-dividend ratio is followed by high excess returns. Low price-

dividend ratio also implies that disasters are more likely to happen. When disasters occur,

dividends and realized returns drop, therefore predictability becomes weaker in the full set
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of simulations. Predictability is even weaker in population, reflecting the small-sample bias

in predictive regressions.

In the data, the price-dividend ratio also has some predictive power on long-term bond

excess returns, though the coefficients are not statistically significant and R2 values are low.

The model generates similar implications. In the model, inflation disaster and non-inflation

disaster risks have similar effect on the price-dividend ratio: Higher disaster risks, higher

price-dividend ratio. However, the two types of disaster risks have different effect on the

bond premium. High inflation disaster leads to a large positive bond premium while high

non-inflation disaster risk leads to a small negative bond premium. Because the two risks

have offsetting effects, price dividend is not a good predictor for the bond market excess

return. The coefficients are close to zero and the R2’s are low. In the data, price-dividend

ratio predicts stock market excess return with R2 = 0.13 and bond market returns with

R2 = 0.09 with 5-year holding period, in the model, the R2’s for stock market return and

bond returns in the model are 0.44 and 0.07, respectively.

Tables 12 and 14 report the results of the regressing aggregate and bond market excess

returns on the linear combination of forward rates. As shown in the previous section,

a linear combination of forward rates can predict long-term bond excess returns, and the

model successfully replicate this result. In the model, both the bond premium and the linear

combination of forward rates increase with inflation disaster probability and decrease with

non-inflation diaster probability. Hence when the linear combination of forward rates is

high, the bond premium is also high.

On the other hand, the linear combination of forward rates has less predictive power

on the aggregate market excess returns (Duffee (2012)). 22 In the model, the two types

22The magnitude of the R2-statistics depends on the subsample. For example, Cochrane and Piazzesi

(2005) find that the linear combination of forward rates predicts one-year aggregate market excess returns

with an R2 = 0.07 in the sample from 1964 through 2003. In the corresponding period, the R2 is 0.36

for one-year nominal bond excess returns. In the full sample from 1953 to 2010, the linear combination of

forward rates appears to have no predictive power.
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of disaster probability affect the aggregate market premium in the same direction, higher

disaster probability, higher premium. However, they have different effects on the linear

combination of forward rates. Therefore, the linear combination of forward rates is not a

good predictor for the aggregate market premium in the model. Comparing Panel A and

Panel B of Tables 12 and 14, one can see that the linear combination of forward rates

predicts the long-term bond excess returns with a much higher R2 value than for the aggre-

gate market excess returns, implying that the forward rate factor has a stronger predictive

power on bond excess returns. For example, forward rates factor predicts aggregate market

excess return with R2 = 0.02 and bond market excess returns with R2 = 0.12 with 5-year

holding period in the data. The R2’s in the model are 0.08 for aggregate market excess

return, and 0.32 for bond market excess return.

Lettau and Wachter (2011) also consider these regressions; the single forward rate factor

in their model predicts bond excess returns and aggregate market excess returns with similar

R2 values. In the data, even though the R2 depends on the sample period, the forward

rate factor has a stronger predictive power on bond excess returns. Wachter (2006) and

Gabaix (2012) also study both the stock and bond markets. The model of Wachter (2006),

however, implies that the risk premia on stocks and bonds move together. In Gabaix

(2012), the time-varying risks in stock and bond market are unrelated, where in this paper,

the underlying risks are the same, but they have different effect on the premia. The model

in this paper is able to generate more realistic implications for these predictive regressions

because the prices of risks in the model have a two-factor structure, and these factors have

differential effects on the stock and bond markets.

3.3.6 Implied time series

The three state variables, expected inflation, non-inflation disaster probability and inflation

disaster probability, determine equity and nominal bond prices in the model. Therefore,

with historical price data, one can find implied values of qt, λc,t, and λcq,t by inverting the

equations for nominal bond yield and price-dividend ratio, (21) and (30). In this section,
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I will use information from both the equity and bond market to calculate the implied

state variables, since equity prices help identifying the total disaster probability and bond

prices identifies expected inflations and separate the two types of disaster risks. Following

Wachter (2013), rather than using the price-dividend ratio, I use the monthly series of

price-earning ratio on the S&P 500, which can be found on Robert Shiller’s website.23

In order to compare it to the price-dividend ratio in the model, I demean both series by

subtracting the sample mean of the price-earning ratio and add the population mean of

the price-dividend ratio calculated from the model. I also use monthly average nominal

yields and monthly yield spreads (defined as five-year yield minus one year yield). I then

calculate the implied values of qt, λc,t, and λcq,t using equations (21) and (30), restricting

the disaster probabilities λc,t, and λcq,t to be non-negative.

Figure 10 plots the resulting time series of these states variables from June 1952 to

December 2012, at monthly frequency. The average expected inflation during this period

is 3.43%, the average non-inflation disaster probability is 2.08% and the average inflation

disaster probability is 0.75%. Non-inflation disaster probability was relatively more im-

portant in the 1950s and the 1960s, and expected inflation was relatively low during this

period. Both type of disaster probabilities start rising during the stagflation period in the

1970s. In particular, non-inflation disaster probability peaked at 8% around late 1970s

and inflation disaster peaked at 3% in the 1980s. Inflation disaster probability becomes

more important, it even briefly exceeds non-inflation disaster probability around that time.

During the same period, expected inflation was also rising rapidly, peaking at 17% early

1980s. Both disaster probabilities were low in the 1990s and early 2000s, and expected

inflation during this time was less volatile.24

23Fama and French (2001) points out that firms have been paying less dividend. However, price-dividend

ratio in the model can not capture this characteristic, and calculating implied disaster probability using

price-dividend ratio can be misleading. Hence I use the price-earning ratio to alleviate this concern.
24Notice that the implied expected inflation series become negative in early 2000s and also during the

recent crisis. During these periods, yield levels were relatively low and yield spreads were relatively high.

Because expected inflation is the only variable that can move yield level and yield spread in different
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To further examine the plausibility of the implied expected inflation series, I look at its

correlation with data on expectations of inflation. The forecast data is from the Survey of

Professional Forecast and it is available at quarterly frequency from 1970. The correlation

between the data and model-implied expected inflations is around 87%, furthermore, this

correlation is higher than the correlation between expected inflations and average yield

level in the data, which is 78%. These results suggest that the model implies reasonable

expected inflations, also, even though it is mostly determined by the level of nominal bond

yields, other term structure information also helps identifying expected inflation.

4 Conclusion

Why is the average term structure upward-sloping? Why are excess returns on nominal

bonds predictable? This paper provides an explanation for these questions using a model

with time-varying rare disaster risks. Previous research has shown that a model that

includes time-varying disaster risks can generate high equity premium and excess returns

volatility. Motivated by historical data, disasters in this model affect not only aggregate

consumption, but also expected inflation. A jump in expected inflation pushes down the

real value of nominal bonds, and investors require compensation for bearing these inflation

disaster risks. Furthermore, this premium increases with bond maturity, which leads to

an upward-sloping nominal term structure. Time-varying bond risk premia arise naturally

from time-varying disaster probabilities, and prices of risk in this model follow a two-factor

structure.

The model is calibrated to match the aggregate consumption, inflation, and equity

market moments, and the quantitative results show that this model produces realistic

means and volatilities of nominal bond yields. The three state variables in the model are

highly correlated with the first three principal components, which explain almost all of the

variations in the nominal yield curve both in the model and in the data. This model can

direction in the model, it leads to negative implied expected inflations.
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also account for the violation of the expectations hypothesis. In particular, I show that the

yield spread and a linear combination of forward rates can predict long-term bond excess

returns. Furthermore, the model is capable of capturing the joint predictive properties of

the aggregate market returns and of the bond returns. Aggregate market variables have

higher predictive powers for equity excess returns while the term structure variables have

higher predictive powers for bond excess returns.

33



Appendix

A Model derivation

A.1 Notation

Definition A.1. Let X be a jump-diffusion process. Define the jump operator of X with

respect to the jth type of jump as the following:

Jj(X) = Xtj −Xtj− j ∈ {c, cq, q},

for tj− such that a type-j jump occurs. Then define

J̄j(X) = Eνj
[
Xtj −Xtj−

]
j ∈ {c, cq, q},

and

J̄ (X) = [J̄c(X), J̄cq(X), J̄q(X)]>.

A.2 The value function

Proof of Theorem 1 Let S denote the value of a claim to aggregate consumption, and

conjecture that the price-dividend ratio for the consumption claim is constant:

St
Ct

= l,

for some constant l. This relation implies that St satisfies

dSt = µSt−dt+ σSt−dBct + (eZct − 1)StdNct + (eZcq,t − 1)StdNcq,t. (A.1)

Consider an agent who allocates wealth between S and the risk-free asset. Let αt be

the fraction of wealth in the risky asset St, and let ct be the agent’s consumption. The
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wealth process is then given by

dWt =
(
Wtαt

(
µ− rt + l−1

)
+Wtrt − ct

)
dt+WtαtσdBct

+ αtWt

(
(eZct − 1)StdNct + (eZcq,t − 1)StdNcq,t

)
,

where rt denotes the instantaneous risk-free rate. Optimal consumption and portfolio

choices must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
αt,Ct

{
JW
(
Wtαt

(
µ− rt + l−1

)
+Wtrt − ct

)
+ κλc

(
λ̄c − λct

)
+ κλcq

(
λ̄cq − λcq,t

)
+

1

2
JWWW

2
t α

2
tσ

2 +
1

2

(
Jλcλcσ

2
λcλct + Jλcqλcqσ

2
λcqλcq,t

)
+ λctEνc

[
J
(
Wt

(
1 + αt

(
eZct − 1

))
, λt
)
− J (Wt, λt)

]
+ λcq,tEνcq

[
J
(
Wt

(
1 + αt

(
eZcq,t − 1

))
, λt
)
− J (Wt, λt)

]
+ f (ct, Vt)

}
= 0, (A.2)

where Jn denotes the first derivative of J with respect to variable n, for n equal to λi or

W , and Jnm denotes the second derivative of J with respect to n and m.

In equilibrium, αt = 1 and ct = Wtl
−1. Substituting these policy functions into (A.2)

implies

JWWtµ+ Jλcκλc
(
λ̄c − λct

)
+ Jλcqκλcq

(
λ̄cq − λcq,t

)
+

1

2
JWWW

2
t σ

2

+
1

2

(
Jλcλcσ

2
λcλct + Jλcqλcqσ

2
λcqλcq,t

)
+ λctEνc

[
J
(
Wte

Zct , λt
)
− J (Wt, λt)

]
+ λcq,tEνcq

[
J
(
Wte

Zcq,t , λt
)
− J (Wt, λt)

]
+ f (ct, Vt) = 0. (A.3)

By the envelope condition fC = JW , we obtain β = l−1. Given the consumption-wealth

ratio, it follows that

f (ct, Vt) = f
(
Wtl

−1, J(Wt, λt)
)

= βW 1−γ
t

(
log β − log I(λt)

1− γ

)
. (A.4)
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Substituting (A.4) and (6) into (A.3) and dividing both sides by W 1−γ
t I(λt), we find

µ+ I−1(1− γ)−1
(
Iλcκλc(λ̄c − λct) + Iλcqκλcq(λ̄cq − λcq)

)
− 1

2
γσ2

+
1

2
I−1

(
Iλcλcσ

2
λcλct + Iλcqλcqσ

2
λcqλcq,t

)
+ (1− γ)−1

(
λcEνc

[
e(1−γ)Zc − 1

]
+ λcqEνcq

[
e(1−γ)Zcq − 1

])
+ β

(
log β − log I(λt)

1− γ

)
= 0,

where Iλj denotes the first derivative of I with respect to λj and Iλjλj denotes the second

derivative for j ∈ {c, cq}.

Collecting terms in λjt results in the following quadratic equation for bj:

1

2
σ2
λj
b2
j − (κλj + β)bj + Eνj

[
e(1−γ)Zj − 1

]
,

for j ∈ {c, cq}, implying

bj =
κλj + β

σ2
λj

±

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

,

Collecting constant terms results in the following characterization of a in terms of b:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β +

1

β
b>
(
κλ ∗ λ̄

)
.

Here and in what follows, I use ∗ to denote element-by-element multiplication of vectors of

equal dimension. Given the form of I(λ), Iλj = bjI and Iλjλj = b2
jI for j ∈ {c, cq}. Because

there are no interaction terms, the solution takes the same form as when there is only a

single type of jump. As in Wachter (2013, Appendix A.1) we take the negative root of the
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corresponding equation for bj to find:

bj =
κλj + β

σ2
λj

−

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

.

Proof of Corollary 2 Since γ > 1, if Zj < 0, then the second term in the square root of

(9) is positive. Therefore the square root term is positive but less than
κj+β

σ2
j

, and bj > 0.

Similarly, if Zj > 0 then the second term in the square root of (9) is negative. Therefore

the square root term is positive and greater than
κj+β

σ2
j

, and bj < 0.

Proof of Corollary 3 The risk-free rate is obtained by taking the derivative of the HJB

(A.2) with respect to αt, evaluating at αt = 1, and setting it equal to 0. The result

immediately follows.

A.3 The state-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC (Ct, Vt) ,

where fC and fV denote derivatives of f with respect to the first and second argument

respectively. Note that the exponential term is deterministic. From equation (4), I obtain

fC (Ct, Vt) = β (1− γ)
V

C
.

From the equilibrium condition Vt = J (β−1Ct, λt), together with the form of the value

function (6), I get

fC (Ct, Vt) = βγC−γt I(λt). (A.5)
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Applying Ito’s Lemma to (A.5) implies

dπt
πt−

= µπtdt+ σπtdBt +
(
e−γZct − 1

)
dNct +

(
e−γZcq,t − 1

)
dNcq,t, (A.6)

where

σπt =
[
−γσ, 0, 0, bcσc

√
λct, bcqσcq

√
λcq,t

]
. (A.7)

It also follows from no-arbitrage that

µπt = −rt −
(
λctEνc

[
e−γZct − 1

]
+ λcq,tEνcq

[
e−γZcq,t − 1

])
= −β − µ+ γσ2 −

(
λctEνc

[
e(1−γ)Zct − 1

]
+ λctEνcq

[
e(1−γ)Zcq,t − 1

])
. (A.8)

From (A.6) we can see that in the event of a disaster, marginal utility (as represented by

the state-price density) jumps upward. This implies that investors require compensation

for bearing disaster risks. The first element of (A.7) implies that the standard diffusion

risk in consumption is priced; more importantly, changes in λjt are also priced as reflected

by the last two elements of (A.7).

The nominal state-price density π$ equals

π$
t =

πt
Pt
. (A.9)

The nominal state-price density follows

dπ$
t

π$
t−

= µ$
πtdt+ σ$

πtdBt +
(
e−γZct − 1

)
dNct +

(
e−γZcq,t − 1

)
dNcq,t, (A.10)

where

σ$
πt =

[
−γσ, −σP , 0, bcσλc

√
λct, bcqσλcq

√
λcq,t

]
, (A.11)
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and

µ$
πt = −β − µ+ γσ2 − qt + σ2

P −
(
λctEνc

[
e(1−γ)Zct − 1

]
+ λctEνcq

[
e(1−γ)Zcq,t − 1

])
. (A.12)

By comparing (A.11) to (A.7), we can see that the second element is no longer zero. This

implies that the diffusion risk in inflation is also priced in the nominal state-price density.

By comparing (A.12) to (A.8), we can see that the expected inflation and volatility of

realized inflation also affect the drift of the nominal state-price density.

Proof of Corollary 4 It follows from no-arbitrage that

µ$
πt = −r$

t −
(
λctEνc

[
e−γZct − 1

]
+ λcq,tEνcq

[
e−γZcq,t − 1

])
,

where µ$
πt is given by (A.12). Therefore the nominal risk-free rate on a nominal bond, r$

t is

r$
t = β + µ− γσ2 + qt − σ2

P + λctEνc
[
e−γZct

(
eZct − 1

)]
+ λqtEνcq

[
e−γZcq,t

(
eZcq,t − 1

)]
.

B Pricing general zero-coupon equity

This section provides the price of a general form of a zero-coupon equity, both in real terms

and in nominal terms. The dividend on the aggregate market and the face value on the

bond market will be special cases.

B.1 Real assets

First I will consider the price of a real asset. Consider a stream of cash-flow that follows a

jump-diffusion process:

dDt

Dt−
= µD dt+ σD dBt + (eφcZct − 1) dNct + (eφcqZcq,t − 1) dNcq,t. (B.1)
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Lemma B.1. Let H (Dt, λt, τ) denote the time t price of a single future cash-flow at time

s = t+ τ :

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
.

By Ito’s Lemma, we can write

dH(Dt, λt, τ)

H(Dt, λt, τ)
= µH(τ),tdt+ σ>H(τ),tdBt +Jc(πtH(Dt, λt, τ))dNct +Jcq(πtH(Dt, λt, τ))dNcq,t.

for a scalar process µH(τ),t and a vector process σH(τ),t. Then, no-arbitrage implies that:

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt(τ)
λ>t J̄ (πtH(Dt, λt, τ)) = 0. (B.2)

Proof No-arbitrage implies that H(Ds, λs, 0) = Ds and that

πtH(Dt, λt, τ) = Et [πsH(Ds, λs, 0)] .

To simplify notation, let Ht = H(Dt, λt, τ), µH,t = µH(τ),t, and σH,t = σH(τ),t. It follows

from Ito’s Lemma that

dHt

Ht−
= µH,tdt+ σH,tdBt + (eφcZct − 1)dNct + (eφcqZcq,t − 1)dNcq,t.

Applying Ito’s Lemma to πtHt implies that the product can be written as

πtHt = π0H0 +

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s

)
+

∫ t

0

πsHs(σH,s + σπ,s)dBs∑
0<sci≤t

(
πsciHsci − πs−ciHs−ci

)
+

∑
0<scq,i≤t

(
πscq,iHscq,i − πs−cq,iHs−cq,i

)
, (B.3)

where sji = inf{s : Njs = i} (namely, the time that the ith time type-j jump occurs, where

j ∈ {c, cq}).

We use (B.3) to derive a no-arbitrage condition. The first step is to compute the
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expectation of the jump terms
∑

0<sji≤t

(
πsjiHsji − πs−jiHs−ji

)
. The pure diffusion processes

are not affected by the jump. Adding and subtracting the jump compensation terms from

(B.3) yields:

πtHt = π0H0+

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s +

1

πsHs

(
λcJ̄c(πsHs) + λcqJ̄cq(πsHs)

))
ds

+

∫ t

0

πsHs(σH,s + σπ,s)dBs +
∑

0<sci≤t

((
πsciHsci − πs−ciHs−ci

)
−
∫ t

0

πsHsλcJ̄c(πsHs)ds

)
+

∑
0<scq,i≤t

((
πscq,iHscq,i − πs−cq,iHs−cq,i

)
−
∫ t

0

πsHsλcqJ̄cq(πsHs)ds

)
(B.4)

Under mild regularity conditions analogous to those given in Duffie, Pan, and Singleton

(2000), the second and the third terms on the right hand side of (B.4) are martingales.

Therefore the first term on the right hand side of (B.4) must also be a martingale, and it

follows that the integrand of this term must equal zero:

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt(τ)
λ>t J̄ (πtH(Dt, λt, τ)) = 0.

Theorem B.2. The function H takes an exponential form:

H(Dt, λt, τ) = Dt exp
{
aφ(τ) + λ>t bφλ(τ)

}
, (B.5)

where bφλ = [bφλc , bφλcq ]
>. Function bφλj for j ∈ {c, cq} solves

dbφλj
dτ

=
1

2
σ2
λj
bφλj(τ)2 +

(
bjσ

2
λj
− κλj

)
bφλj(τ) + Eνj

[
e(φj−γ)Zjt − e(1−γ)Zjt

]
(B.6)

and function aφ solves

daφ
dτ

= µD − µ− β + γσ (σ − σD) + bφλ(τ)>
(
κλj ∗ λ̄j

)
. (B.7)
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The boundary conditions are aφ (0) = bφλc(0) = bφλcq(0) = 0.

Proof See proof of Theorem B.4.

B.2 Nominal asset

Similar no-arbitrage conditions can be derived for nominally denominated assets. Suppose

cash-flow that follows:

dD$
t

D$
t−

= µD$ dt+ σD$ dBt + (eφ
$
cZct − 1) dNct + (eφ

$
cqZcq,t − 1) dNcq,t.

Lemma B.3. Let H$(D$
t , qt, λt, τ) denote the time t price of a single future dividend pay-

ment at time t+ τ :

H$(D$
t , qt, λt, s− t) = Et

[
π$
s

π$
t

D$
s

]
.

By Ito’s Lemma, we can write

dH$(D$
t , qt, λt, τ)

H$(D$
t , qt, λt, τ)

= µH$(τ),tdt+ σ>H$(τ),tdBt + Jc(π$
tH

$(D$
t , qt, λt, τ))dNct

+ Jcq(π$
tH

$(D$
t , qt, λt, τ))dNcq,t + Jq(π$

tH
$(D$

t , qt, λt, τ))dNqt.

for a scalar process µH$(τ),t and a vector process σH$(τ),t. Then, no-arbitrage implies that:

µπ$,t + µH$(τ),t + σπ$,tσ
>
H$(τ),t +

1

π$
tH

$
t (τ)

(
λctJ̄c(π$

tH
$(D$

t , qt, λt, τ))

+ λcq,t
(
J̄cq(π$

tH
$(D$

t , qt, λt, τ)) + J̄q(π$
tH

$(D$
t , qt, λt, τ))

))
= 0, (B.8)

Proof See proof of Lemma B.1.

Theorem B.4. The function H$ takes an exponential form:

H$(D$
t , qt, λt, τ) = D$

t exp
{
aφ$(τ) + bφ$q(τ)qt + bφ$λ(τ)>λt

}
, (B.9)
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where bφ$λ =
[
bφ$λc , bφ$λcq

]
. Function bφ$q solves

dbφ$q
dτ

= −κqbφ$q(τ)− 1; (B.10)

function bφ$λc solves

dbφ$λc
dτ

=
1

2
σ2
λcbLλc(τ)2 +

(
bcσ

2
λc − κλc

)
bφ$λc(τ) + Eνc

[
e(φ$c−γ)Zct − e(1−γ)Zct

]
; (B.11)

function bφ$λcq solves

dbφ$λcq
dτ

=
1

2
σ2
λcqbφ$λcq(τ)2 +

(
bcqσ

2
λcq − κλcq

)
bφ$λcq(τ)

+ Eνcq

[
e(φ

$
cq−(γ+b

φ$q
(τ)))Zcq,t − e(1−γ)Zcq,t

]
+ Eνq

[
e−bφ$q(τ))Zqt − 1

]
; (B.12)

and function aL solves

daφ$

dτ
= µD−β−µ+γσ(σ−σD)+σ2

P +
1

2
σ2
qbφ$q(τ)2 +bφ$q(τ)κq q̄+bφ$λ(τ)>(κλ ∗ λ̄). (B.13)

The boundary conditions are aφ$(0) = bφ$q(0) = bφ$λc(0) = bφ$λcq(0) = 0.

Proof It follows from Ito’s Lemma that

dH$
t

H$
t−

= µH$,tdt+ σH$,tdBt +
1

H$
t−

(
Jc(H$

t ) + Jcq(H$
t ) + Jq(H$

t )

)
,
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where µH$ and σH$ are given by

µH$,t =
1

H$

(
∂H$

∂q

(
q̄ − qt

)
+
∂H$

∂λc

(
λ̄c − λct

)
+
∂H$

∂λcq

(
λ̄c − λcq,t

)
− ∂H$

∂τ

+
1

2

∂2H$

∂q2
j

σ2
q +

1

2

(
∂2H$

∂λ2
c

σ2
λc +

∂2H$

∂λ2
c

σ2
λc

))
= bφ$q(τ)κq (q̄ − qt) + bφ$λc(τ)κλc

(
λ̄c − λct

)
+ bφ$λcq(τ)κλcq

(
λ̄cq − λcq,t

)
+

1

2
bφ$q(τ)2σ2

q +
1

2

(
bφ$λc(τ)2σ2

λcλct + bφ$λcq(τ)2σ2
λcqλcq,t

)
−

(
daφ$

dτ
+
dbφ$q
dτ

qt +
∑
j

dbφ$λj
dτ

λjt

)
, (B.14)

and

σH$,t =
1

L

(
∂H$

∂qt
[0, 0, σq

√
qt, 0, 0] +

∂H$

∂λc
[0, 0, 0, σλc

√
λct, 0] +

∂H$

∂λcq
[0, 0, 0, 0, σλcq

√
λcq,t]

)
=
[
0, 0, bφ$q(τ)σq

√
qt, bφ$λc(τ)σλc

√
λct, bφ$λcq(τ)σλcq

√
λcq,t

]
. (B.15)

Furthermore,

J̄c(π$
tH

$
t )

π$
tH

$
t

= Eνc

[
e(φ$c−γ)Zct − 1

]
, (B.16)

J̄cq(π$
tH

$
t )

π$
tH

$
t

= Eνcq

[
e(φ

$
cq−(γ+b

φ$q
(τ)))Zcq,t − 1

]
, (B.17)

and

J̄q(π$
tH

$
t )

π$
tH

$
t

= Eνq

[
e−bφ$q(τ))Zqt − 1

]
. (B.18)

Recall that λq = λcq. Substituting (B.14) – (B.17) along with (A.11) and (A.12) into the

no-arbitrage condition (B.8) implies that functions aφ$ , bφ$q, bφ$λc , and bφ$λcq solve the
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following ordinary differential equation:

bφ$q(τ)κq (q̄ − qt) + bφ$λc(τ)κλc
(
λ̄c − λct

)
+ bφ$λcq(τ)κλcq

(
λ̄cq − λcq,t

)
+

1

2
bφ$q(τ)2σ2

q +
1

2

(
bφ$λc(τ)2σ2

λcλct + bφ$λc(τ)2σ2
λcλct

)
− β − µ+ γσ2 − qt + σ2

P

+ bφ$λc(τ)bjσ
2
λcλct + bφ$λcq(τ)bjσ

2
λcqλcq,t + λctEνc

[
e(φ$c−γ)Zct − e(1−γ)Zct

]
+ λcq,t

(
Eνcq

[
e(φ

$
cq−(γ+b

φ$q
(τ)))Zcq,t − e(1−γ)Zcq,t

]
+ Eνq

[
e−bφ$q(τ))Zqt − 1

])
−
(
daφ$

dτ
+
dbφ$q
dτ

qt +
dbφ$λc
dτ

λct +
dbφ$λcq
dτ

λcq,t

)
= 0. (B.19)

Collecting qt terms results in the following ordinary differential equation:

dbφ$q
dτ

= −κqbφ$q(τ)− 1;

collecting terms multiplying λc results in the following ordinary differential equation for

bφ$λc

dbφ$λc
dτ

=
1

2
σ2
λcbLλc(τ)2 +

(
bcσ

2
λc − κλc

)
bφ$λc(τ) + Eνc

[
e(φ$c−γ)Zct − e(1−γ)Zct

]
;

collecting terms multiplying λcq results in the following ordinary differential equation for

bφ$λcq

dbφ$λcq
dτ

=
1

2
σ2
λcqbφ$λcq(τ)2 +

(
bcqσ

2
λcq − κλcq

)
bφ$λcq(τ)

+ Eνcq

[
e(φ

$
cq−(γ+b

φ$q
(τ)))Zcq,t − e(1−γ)Zcq,t

]
+ Eνq

[
e−bφ$q(τ))Zqt − 1

]
;

and collecting constant terms results in the following ordinary differential equation for aL:

daφ$

dτ
= µD − β − µ+ γσ(σ − σD) + σ2

P +
1

2
σ2
qbφ$q(τ)2 + bφ$q(τ)κq q̄ + bφ$λ(τ)>(κλ ∗ λ̄).

The boundary conditions are aφ$(0) = bφ$q(0) = bφ$λc(0) = bφ$λcq(0) = 0.
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C Nominal bond pricing

Proof of Corollary 7 By the no-arbitrage condition (B.8) and the definition of µπ$ (A.12),

we can rewrite the premium in population (22) as

r
$,(τ)
t − r$

t = −σπ$,tσ
>
L,t − λct

(
J̄c
(
π$
tL

$
t

)
π$
tL

$
t

− J̄c(π
$
t )

π$
t

− J̄c(L
$
t )

L$
t

)

− λcq,t

(
J̄cq
(
π$
tL

$
t

)
π$
tL

$
t

− J̄cq(π
$
t )

π$
t

− J̄cq(L
$
t )

L$
t

)
− λqt

(
J̄q
(
π$
tL

$
t

)
π$
tL

$
t

− J̄q(π
$
t )

π$
t

− J̄q(L
$
t )

L$
t

)
.

From (A.10), we know that for j ∈ {c, cq},

J̄j(π$
t )

π$
t

= Eνj
[
e−γZjt − 1

]
.

Recall that Nq type of jumps (inflation spike) does not affect π$, therefore,
J̄q(π$

t )

π$
t

= 0 and

J̄q(π$
tL

$
t)

π$
tL

$
t

=
J̄q(L$

t)
L$
t

. From (B.16) – (B.17), together with φ$
c = φ$

cq = 0, we know that

J̄c
(
π$
tL

$
t

)
π$
tL

$
t

= Eνc
[
e−γZct − 1

]
, and

J̄cq
(
π$
tL

$
t

)
π$
tL

$
t

= Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − 1

]
.

Furthermore,

J̄c
(
L$
t

)
L$
t

= 0, and
J̄cq
(
L$
t

)
L$
t

= Eνcq

[
e−b

$
Lq(τ)Zcq,t − 1

]
.

Together with (A.11) and (B.15), we obtain:

r
$(τ)
t − r$

t = −λ>t
(
bL$λ(τ) ∗ b ∗ σ2

λ

)
+ λcqEνcq

[
(e−γZcq,t − 1)(1− e−b

$
Lq(τ)Zcq,t)

]
.
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Figure 1: Inflation disasters: Distribution of consumption declines and inflation rates
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Notes: Histograms show the distribution of large consumption declines (peak-to-trough

measure) and high inflation (average annual inflation rate) in periods where large con-

sumption declines and high inflation co-occur. These figures exclude eight events in which

average annual inflation rates exceeded 100%. Data from Barro and Ursua (2008).
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Figure 2: Data vs. model consumption declines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
c
y

Data: Non−inflation disaster

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Power Law α =9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
c
y

Data: Inflation disaster

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Power Law α =7

Notes: This figure plots the distributions of large consumption declines in the data and

the power law distribution used in the model. The top-left panel plots the distributions

of large consumption declines that do not co-occur with high inflation and the top-right

panel plots the power law distribution with parameter 10. The bottom-left panel plots

the distributions of large consumption declines that co-occur with high inflation and the

bottom-right panel plots the power law distribution with parameter 8. Data from Barro

and Ursua (2008).
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Figure 3: Solution for the nominal bond yield
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Notes: The nominal yield of a bond with maturity τ is

y
$,(τ)
t = −1

τ

(
aL(τ) + bLq(τ)qt + bLλ(τ)>λt

)
.

The top-left panel plots the constant term, the top-right panel plots the coefficient mul-

tiplying qt (expected inflation), the bottom-left panel plots the coefficient multiplying λc

(non-inflation disaster probability), and the bottom right panel plots the coefficient multi-

plying λcq (inflation disaster probability). All are plotted as functions of years to maturity

(τ).
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Figure 4: Risk premiums as a function of non-inflation disaster probability
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Notes: This figure shows the instantaneous expected nominal return on a one-year nominal

zero coupon bond above the nominal risk-free rate (solid line) and the analogous premium

for the five-year nominal zero coupon bond (dashed line). Premiums are shown as a function

of the non-inflation disaster probability, λ1, while λ2 is fixed at its mean of 1.03%. Premiums

are in annual terms.
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Figure 5: Risk premiums as a function of inflation disaster probability
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Notes: This figure shows the instantaneous expected nominal return on a one-year nominal

zero coupon bond above the nominal risk-free rate (solid line) and the analogous premium

for the five-year nominal zero coupon bond (dashed line). Premiums are shown as a function

of the disaster probability, λ2, while λ1 is fixed at its mean of 1.83%. Premiums are in annual

terms.
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Figure 6: Average bond yield
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Notes: This figure plots the data and model-implied average nominal bond yield as a

function of years to maturity. The solid line plots the average nominal bond yields in the

data. The dashed line plots the median average bond yields in the small sample containing

no consumption disasters, and the dotted lines plot the 25% and 75% bounds. Data

moments are calculated using monthly data from 1952 to 2011. Data are constructed using

the Fama-Bliss dataset from CRSP. All yields are in annual terms.
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Figure 7: Volatility of bond yield
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Notes: This figure plots the data and model-implied volatility of nominal bond yield as a

function of years to maturity. The solid line plots the volatility of nominal bond yields in

the data. The dashed line plots the median volatility of bond yields in the small-samples

containing no consumption disasters, and the dotted lines plot the 25% and 75% bounds.

Data moments are calculated using monthly data from 1952 to 2011. Data are constructed

using the Fama-Bliss dataset from CRSP. All yields are in annual terms.
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Figure 8: Campbell-Shiller long rate regression
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Notes: This figure reports the coefficients of the Campbell-Shiller regression.

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h

(
y

$,(n)
t − y$,(h)

t

)
+ error,

where h = 0.25. The solid line plots the coefficients in the data. The dash-dotted line

plots the coefficients under the expectation hypothesis. The dashed line plots the median

value of the coefficients in the small-samples containing no consumption disasters, and the

dotted lines plot the 5% and 95% bounds. Data moments are calculated using monthly

data from 1952 to 2011. Data are constructed using Fama-Bliss dataset from the CRSP.
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Figure 9: Principal component analysis
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Notes: This figure plots the results from the principal component analysis. I report the

median values from the subset of small-sample simulations that do not contain any disasters.

The top-left panel plots the loadings on the first principal component, the top-right panel

plots the loadings on the second principal component, and the bottom-left panel plots the

loadings on the third principal component. The bottom-right panel shows the percentage

of variance explained by each of the principal components. Data are at monthly frequency

from June 1952 to December 2011.
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Figure 10: Implied time series
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Notes: This figure plots the expected inflation, non-inflation disaster probability and in-

flation disaster probability implied by the historical values of price-earning ratio for the

S&P 500 index, average nominal yields (average of one-, two-, three-, four-, and five-year

nominal bond yields), and term spread (five-year yield minus one-year yield). The disaster

probabilities are restricted to be non-negative. Data are available at monthly frequency

from June 1952 to December 2011.
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Table 1: Summary statistics of consumption disasters

Panel A: All countries

Number of consumption disasters 89

Number of consumption disasters with high inflation 30

Percentage of consumption disasters with high inflation (%) 33.71

Panel B: OECD countries

Number of consumption disasters 53

Number of consumption disasters with high inflation 17

Percentage of consumption disasters with high inflation (%) 32.08

Data from Barro and Ursua (2008). I exclude four OECD disasters and two non-OECD

disasters in which inflation data are not available.
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Table 2: Parameters

Panel A: Basic parameters

Average growth in consumption (normal times) µ (%) 1.96

Average growth in dividend (normal times) µD (%) 3.63

Volatility of consumption growth (normal times) σ (%) 1.45

Leverage φ 3.5

Rate of time preference β 0.010

Relative risk aversion γ 3.0

Panel B: Inflation parameters

Average inflation q̄ (%) 2.70

Volatility of expected inflation σq (%) 1.30

Volatility of realized inflation σp (%) 0.80

Mean reversion in expected inflation κq 0.09

Panel C: Non-inflation disaster parameters

Average probability of non-inflation disaster λ̄c (%) 1.83

Mean reversion in non-inflation disaster probability κλc 0.11

Volatility parameter for non-inflation disaster σλc 0.107

Minimum non-inflation disaster (%) 10

Power law parameter for non-inflation disaster 9

Panel D: Inflation disaster parameters

Average probability of inflation disaster λ̄cq (%) 1.03

Mean reversion in inflation disaster probability κλcq 0.11

Volatility parameter for inflation disaster σλcq 0.093

Minimum inflation disaster (%) 10

Power law parameter for inflation disaster 7
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Table 3: Log consumption and dividend growth moments

Panel A: Consumption growth

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.91 1.64 1.95 2.26 −0.38 1.38 2.10 1.51

standard deviation 1.41 1.23 1.44 1.66 1.34 3.74 9.95 3.90

skewness −0.48 −0.49 0.00 0.48 −6.72 −4.02 0.22 −8.51

kurtosis 3.49 2.20 2.80 3.94 2.48 21.73 49.73 107.47

Panel B: Dividend growth

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.78 2.42 3.50 4.59 −4.66 1.50 4.03 1.97

standard deviation 6.57 4.30 5.05 5.83 4.69 13.10 34.83 13.66

skewness −0.01 −0.49 0.00 0.48 −6.72 −4.02 0.22 −8.51

kurtosis 5.26 2.20 2.80 3.94 2.48 21.73 49.73 107.47

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating data from the model at a monthly frequency for

60,000 years and then aggregating monthly growth rates to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

consumption disasters occur.
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Table 4: Inflation moments

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

Mean 3.74 0.45 3.72 14.88 0.95 6.15 30.73 12.11

Standard deviation 3.03 1.78 2.94 16.79 1.91 5.73 33.65 23.52

AC(1) 0.66 0.61 0.84 0.93 0.65 0.87 0.94 0.94

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating data from the model at a monthly frequency for

60,000 years and then aggregating monthly growth rates to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

consumption disasters occur. All numbers are in annual level terms.
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Table 5: Nominal Yield Moments

Panel A: Average nominal bond yield

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year 5.20 2.38 5.53 14.32 2.28 7.22 24.17 11.18

2-year 5.40 2.69 5.72 14.39 2.57 7.41 24.20 11.30

3-year 5.58 2.92 5.87 14.34 2.78 7.53 24.08 11.34

4-year 5.72 3.11 5.98 14.20 2.93 7.61 23.85 11.31

5-year 5.82 3.26 6.06 14.10 3.06 7.65 23.53 11.25

Panel B: Volatility of nominal bond yield

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year 3.02 1.70 2.87 12.80 1.91 5.25 21.87 14.18

2-year 2.97 1.63 2.76 12.44 1.83 5.13 21.30 13.88

3-year 2.90 1.60 2.72 12.07 1.81 5.03 20.73 13.56

4-year 2.84 1.59 2.70 11.75 1.79 4.96 20.18 13.24

5-year 2.78 1.58 2.69 11.42 1.78 4.91 19.64 12.92

Notes: Panel A reports the average nominal bond yield and Panel B reports the volatility

of the nominal bond yield. Data moments are calculated using monthly data from 1952 to

2011. Population moments are calculated by simulating data from the model at a monthly

frequency for 60,000 years. I also simulate 10,000 60-year samples and report the 5th-,

50th- and 95th-percentile for each statistic both from the full set of simulations and for the

subset of samples for which no consumption disasters occur. All yields are in annual terms.
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Table 6: Bond Excess Return

Panel A: Average Bond Excess Return

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.47 −0.23 0.35 1.28 −0.56 0.33 1.78 0.47

3-year 0.91 −0.41 0.59 2.13 −0.92 0.56 2.91 0.77

4-year 1.14 −0.55 0.79 2.75 −1.19 0.75 3.75 1.00

5-year 1.37 −0.61 0.97 3.26 −1.36 0.90 4.41 1.21

Panel B: Standard Deviation of Bond Excess Return

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 1.80 1.29 1.76 5.62 1.39 2.91 9.81 5.01

3-year 3.41 2.49 3.36 9.42 2.68 5.36 16.27 8.55

4-year 4.74 3.66 4.99 12.24 3.96 7.62 21.19 11.44

5-year 5.97 4.80 6.66 14.64 5.25 9.76 25.46 14.08

Panel C: Sharpe Ratios

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.26 −0.07 0.19 0.56 −0.11 0.13 0.51 0.09

3-year 0.27 −0.07 0.17 0.50 −0.11 0.11 0.46 0.09

4-year 0.24 −0.07 0.15 0.45 −0.11 0.11 0.41 0.09

5-year 0.23 −0.07 0.14 0.41 −0.10 0.10 0.37 0.09

Notes: Data moments are calculated using annual data from 1952 to 2011. Short-term

rates are constructed using one-year bond yield.
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Table 7: Correlation between principal components and state variables

PC1 PC2 PC3

expected inflation 0.96 0.14 0.22

non-inflation disaster risks −0.29 0.13 0.91

inflation disaster risks 0.17 −0.95 0.13

Notes: This table reports the correlation between each principal component and each state

variable in the model. I report the median value drawn from the subset of small-sample

simulations having no consumption disasters.
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Table 8: Campbell-Shiller long rate regression

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year −0.57 −0.98 −0.30 2.47 −0.93 0.06 3.38 0.20

2-year −0.74 −1.13 −0.38 2.61 −1.05 0.09 3.60 0.39

3-year −1.14 −1.36 −0.47 2.73 −1.25 0.10 3.74 0.51

4-year −1.44 −1.62 −0.57 2.81 −1.49 0.09 3.83 0.60

5-year −1.68 −1.89 −0.66 2.88 −1.74 0.09 3.91 0.67

Notes: This table reports the coefficients of the Campbell-Shiller regression.

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h

(
y

$,(n)
t − y$,(h)

t

)
+ error,

where h = 0.25 and each row represents a bond with a different maturity (n). Data

moments are calculated using quarterly data from June 1952 to December 2011.
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Table 9: Cochrane-Piazzesi forward rate regression

Panel A: Coefficient

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.44 0.34 0.42 0.51 0.34 0.42 0.52 0.61

3-year 0.83 0.75 0.81 0.88 0.75 0.82 0.89 0.94

4-year 1.26 1.18 1.20 1.21 1.18 1.20 1.21 1.15

5-year 1.47 1.43 1.57 1.70 1.41 1.56 1.70 1.30

Panel B: R2-statistics

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.16 0.02 0.17 0.55 0.02 0.12 0.47 0.02

3-year 0.17 0.03 0.18 0.53 0.02 0.12 0.45 0.01

4-year 0.20 0.03 0.18 0.49 0.02 0.13 0.42 0.01

5-year 0.18 0.03 0.18 0.44 0.02 0.13 0.39 0.01

Notes: This table reports the results from the second stage of the Cochrane-Piazzesi single

factor regression. It reports the coefficient on the linear combination of forward rates

on nominal bonds and the R2-statistics from regressing excess bond return on the single

forward rate factor. I consider bonds with maturities of two, three, four and five years.

Data are monthly from 1952 to 2011.
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Table 10: Market moments

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[R(0.25)] 1.25 0.59 1.80 2.40 −1.13 1.28 2.24 0.99

σ(R(0.25)) 2.75 0.95 1.38 2.45 1.05 1.82 3.67 2.45

E[Rm −R(0.25)] 7.25 4.05 6.12 9.48 2.77 5.76 10.23 6.87

σ(Rm) 17.79 10.02 14.59 21.44 11.89 19.33 29.76 19.61

Sharpe ratio 0.41 0.31 0.42 0.56 0.14 0.31 0.49 0.35

exp(E[p− d]) 32.51 26.20 31.63 34.68 20.74 29.38 33.97 28.22

σ(p− d) 0.43 0.09 0.18 0.34 0.11 0.24 0.48 0.32

AR1(p− d) 0.92 0.49 0.75 0.90 0.56 0.80 0.93 0.89

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating monthly data from the model for 60,000 years and

then aggregating to an annual frequency. We also simulate 10,000 60-year samples and

report the 5th-, 50th-, and 95th-percentile for each statistic from the full set of simulations

and for the subset of samples for which no disasters occur. R(0.25) denotes the three-month

Treasury Bill return where R(0.25) = R
$,(0.25)
t

Pt+1

Pt
. Rm denotes the return on the aggregate

market, and p− d denotes the log price-dividend ratio.
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Table 11: Long-horizon regressions of returns on the price-dividend ratio (One-year holding
period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.12 [−1.89] −0.62 −0.35 −0.19 −0.51 −0.23 0.05 −0.17

R2 0.07 0.10 0.20 0.31 0.00 0.08 0.25 0.07

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.02 [1.19] −0.15 −0.03 0.06 −0.14 −0.01 0.15 −0.01

R2 0.02 0.00 0.03 0.38 0.00 0.02 0.22 0.00

Notes: This table reports the results from regressing one-year aggregate market excess

returns and average nominal bond excess return on the price-dividend ratios. Data are

annual from 1953 to 2010. For the data coefficients, I report t-statistics constructed using

Newey-West standard errors. Population moments are calculated by simulating monthly

data from the model for 60,000 years and then aggregating to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic from the full set of simulations and for the subset of samples for which no disasters

occur.
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Table 12: Long-horizon regressions of returns on the linear combination of forward rates
(One-year holding period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.59 [0.39] −2.98 0.76 3.05 −3.00 0.71 3.43 2.16

R2 0.00 0.00 0.03 0.17 0.00 0.02 0.15 0.01

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.15 [3.38] 0.92 1.15 1.34 0.78 1.14 1.45 1.26

R2 0.19 0.06 0.24 0.57 0.01 0.13 0.45 0.01

Notes: This table reports the results from regressing one-year aggregate market excess

returns and average nominal bond excess return on the linear combination of forward

rates. Data are annual from 1953 to 2010. For the data coefficients, I report t-statistics

constructed using Newey-West standard errors. Population moments are calculated by

simulating monthly data from the model for 60,000 years and then aggregating to an

annual frequency. I also simulate 10,000 60-year samples and report the 5th-, 50th- and

95th-percentile for each statistic from the full set of simulations and for the subset of

samples for which no disasters occur.
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Table 13: Long-horizon regressions of returns on the price-dividend ratio (Five-year holding
period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.28 [−2.87] −1.49 −1.08 −0.68 −1.49 −0.86 0.20 −0.68

R2 0.13 0.21 0.51 0.72 0.00 0.27 0.66 0.24

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.07 [1.83] −0.51 −0.06 0.23 −0.53 −0.01 0.53 −0.04

R2 0.09 0.00 0.07 0.50 0.00 0.06 0.42 0.00

Notes: This table reports the results from regressing five-year aggregate market excess

returns and average nominal bond excess return on the price-dividend ratios. Data are

annual from 1953 to 2010. For the data coefficients, I report t-statistics constructed using

Newey-West standard errors. Population moments are calculated by simulating monthly

data from the model for 60,000 years and then aggregating to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic from the full set of simulations and for the subset of samples for which no disasters

occur.
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Table 14: Long-horizon regressions of returns on the linear combination of forward rates
(Five-year holding period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 2.83 [0.80] −11.33 2.18 8.75 −11.70 2.20 11.61 8.56

R2 0.02 0.00 0.09 0.48 0.00 0.07 0.43 0.04

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 2.09 [2.62] 1.23 3.16 4.92 0.91 3.49 6.28 4.94

R2 0.12 0.04 0.32 0.70 0.01 0.25 0.65 0.04

Notes: This table reports the results from regressing five-year aggregate market excess

returns and average nominal bond excess return on the linear combination of forward

rates. Data are annual from 1953 to 2010. For the data coefficients, I report t-statistics

constructed using Newey-West standard errors. Population moments are calculated by

simulating monthly data from the model for 60,000 years and then aggregating to an

annual frequency. I also simulate 10,000 60-year samples and report the 5th-, 50th- and

95th-percentile for each statistic from the full set of simulations and for the subset of

samples for which no disasters occur.
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